Analysis of a New Liquefaction Combined with Desublimation System for CO2 Separation Based on N2/CO2 Phase Equilibrium

نویسندگان

  • Wenchao Yang
  • Shuhong Li
  • Xianliang Li
  • Yuanyuan Liang
  • Xiaosong Zhang
چکیده

Cryogenic CO2 capture is considered as a promising CO2 capture method due to its energy saving and environmental friendliness. The phase equilibrium analysis of CO2-mixtures at low temperature is crucial for the design and operation of a cryogenic system because it plays an important role in analysis of recovery and purity of the captured CO2. After removal of water and toxic gas, the main components in typical boiler gases are N2/CO2. Therefore, this paper evaluates the reliabilities of different cubic equations of state (EOS) and mixing rules for N2/CO2. The results show that Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) fit the experimental data well, PR combined with the van der Waals (vdW) mixing rule is more accurate than the other models. With temperature decrease, the accuracy of the model improves and the deviation of the N2 vapor fraction is 0.43% at 220 K. Based on the selected calculation model, the thermodynamic properties of N2/CO2 at low temperature are analyzed. According to the results, a new liquefaction combined with a desublimation system is proposed. The total recovery and purity of CO2 production of the new system are satisfactory enough for engineering applications. Additionally, the total energy required by the new system to capture the CO2 is about 3.108 MJ·kg−1 CO2, which appears to be at least 9% lower than desublimation separation when the initial concentration of CO2 is 40%. OPEN ACCESS Energies 2015, 8 9496

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO2 Selective Carbon Tubular Membrane: The Effect of Stabilization Temperature on BTDA-TDI/MDI P84 co-polyimide

Membranes offer remarkable attributes such as possessing small equipment footprints, having high efficiency and are environmentally friendly, with carbon membranes progressively investigated for gas separation applications. In this study, carbon tubular membranes for CO2 separationare prepared via the dip-coating method with P84 co-polyimide as the carbon precursor. The prepared membranes were ...

متن کامل

Gas Separation Properties of Mixed Matrix Membranes based on Polyimide and Graphite Oxide

In this work, three different graphene-based materials, namely graphite oxide (GrO), thermally reduced graphite oxide (T-RGrO) and ascorbic acid multi-phase reduced graphene oxide (AMP-RGO), were synthesized and used to produce mixed matrix membranes (MMM) based on Matrimid®5218 for as separation. From the samples produced, a complete set of characterization was performed including XRD, FTIR, T...

متن کامل

Pebax-Modified Cellulose Acetate Membrane for CO2/N2 Separation

Carbon dioxide (CO2) release from the exhaust gas streams of power plants that burn fossil fuels contributes the most emission of this gas, which includes more than half of the greenhouse effects. Thus, the separation of CO2 from exhaust gases is one of the main environmental concerns. Membrane technology, due to many advantages, has attracted many research attentions among the various gas sepa...

متن کامل

Modeling of Pressure Dependence of Interfacial Tension Behaviors of Supercritical CO2 + Crude Oil Systems Using a Basic Parachor Expression

Parachor based expressions (basic and mechanistic) are often used to model the experimentally observed pressure dependence of interfacial tension (IFT) behaviors of complex supercritical carbon dioxide (sc-CO2) and crude oil mixtures at elevated temperatures. However, such modeling requires various input data (e.g. compositions and densities of the equilibrium liquid and vapor phases, and molec...

متن کامل

Synthesis of a Multilayer Ceramic Membrane Used for Hydrogen Separation at High Temperature

A multilayer composite ceramic membrane was prepared by depositing a nano-scale layer of SiO2 on top of a modified porous alumina support by chemical vapor deposition (CVD) method. The modification of the support was carried out by adding a graded layer of Al2O3 (γ-alumina phase), using sol-gel method. An optimized temperature of 700 K for intermediate layer calcination was gained by XRD analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015